Let $\alpha, \beta, \gamma$ be the real roots of the equation, $x ^{3}+ ax ^{2}+ bx + c =0,( a , b , c \in R$ and $a , b \neq 0)$ If the system of equations (in, $u,v,w$) given by $\alpha u+\beta v+\gamma w=0, \beta u+\gamma v+\alpha w=0$ $\gamma u +\alpha v +\beta w =0$ has non-trivial solution, then the value of $\frac{a^{2}}{b}$ is
$5$
$3$
$1$
$0$
If $a > 0$and discriminant of $a{x^2} + 2bx + c$is negative, then $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ is
If $A = \left[ {\begin{array}{*{20}{c}}\alpha &2\\2&\alpha \end{array}} \right]$ and $|{A^3}|$=125, then $\alpha = $
The following system of linear equations $2 x+3 y+2 z=9$ ; $3 x+2 y+2 z=9$ ;$x-y+4 z=8$
$\left| {\,\begin{array}{*{20}{c}}1&5&\pi \\{{{\log }_e}e}&5&{\sqrt 5 }\\{{{\log }_{10}}10}&5&e\end{array}\,} \right| = $
Let the system of linear equations
$x+y+\alpha z=2$
$3 x+y+z=4$
$x+2 z=1$
have a unique solution $\left(x^{*}, y^{*}, z^{*}\right)$. If $\left(\alpha, x^{*}\right),\left(y^{*}, \alpha\right)$ and $\left(x^{*},-y^{*}\right)$ are collinear points, then the sum of absolute values of all possible values of $\alpha$ is