Let $S$ be the sum, $P$ the product and $R$ the sum of reciprocals of $n$ terms in a $G.P.$ Prove that $P ^{2} R ^{n}= S ^{n}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the $G.P.$ be $a, a r, a r^{2}, a r^{3} \ldots . . a r^{n-1}$

According to the given information,

$S=\frac{a\left(r^{n}-1\right)}{r-1}$

$P=a^{n} \times r^{1+2+\ldots+n-1}$

$=a^{n} r^{\frac{n(n-1)}{2}}$               [ $\because $ Sum of first $4n$ natural number is $n \frac{(n+1)}{2}$ ]

$R=\frac{1}{a}+\frac{1}{a r}+\ldots \ldots+\frac{1}{a r^{n-1}}$

$=\frac{r^{n-1}+r^{n-2}+\ldots . r+1}{a r^{n-1}}$

$=\frac{1\left(r^{n}-1\right)}{(r-1)} \times \frac{1}{a r^{n-1}}$    [ $\because $ $1, r, \ldots \ldots r^{n-1}$ forms a $G.P.$ ]

$=\frac{r^{n}-1}{a r^{n-1}(r-1)}$

$\therefore P^{2} R^{n}=a^{2 n} r^{n(n-1)} \frac{\left(r^{n}-1\right)^{n}}{a^{n} r^{n(n-1)}(r-1)^{n}}$

$=\frac{a^{n}\left(r^{n}-1\right)^{n}}{(r-1)^{n}}$

$=\left[\frac{a\left(r^{n}-1\right)}{(r-1)}\right]^{n}$

$=S^{n}$

Hence, $P^{2} R^{n}=S^{n}$

Similar Questions

Let $a_{n}$ be the $n^{\text {th }}$ term of a G.P. of positive terms.

If $\sum\limits_{n=1}^{100} a_{2 n+1}=200$ and $\sum\limits_{n=1}^{100} a_{2 n}=100,$ then $\sum\limits_{n=1}^{200} a_{n}$ is equal to 

  • [JEE MAIN 2020]

The sum of first $20$ terms of the sequence $0.7,0.77,0.777, . . . $ is 

  • [JEE MAIN 2013]

The first term of a $G.P.$ is $1 .$ The sum of the third term and fifth term is $90 .$ Find the common ratio of $G.P.$

If the $4^{\text {th }}, 10^{\text {th }}$ and $16^{\text {th }}$ terms of a $G.P.$ are $x, y$ and $z,$ respectively. Prove that $x,$ $y, z$ are in $G.P.$

If $a,\;b,\;c$ are in $A.P.$, $b,\;c,\;d$ are in $G.P.$ and $c,\;d,\;e$ are in $H.P.$, then $a,\;c,\;e$ are in