माना $\lambda$ एक ऐसी वास्तविक संख्या है जिसके लिए रैखिक समीकरण निकाय $x + y + z =6$; $4 x +\lambda y -\lambda z =\lambda-2$; $3 x +2 y -4 z =-5$ के अनन्त हल हैं। तो $\lambda$ जिस द्विघात समीकरण का एक मूल है, वह है
${\lambda ^2} - \lambda - 6\, = 0$
${\lambda ^2} - 3\lambda - 4 = 0$
${\lambda ^2} + 3\lambda - 4 = 0$
${\lambda ^2} + \lambda - 6 = 0$
माना $m$ तथा $M \left|\begin{array}{ccc}\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x \end{array}\right|$ के, क्रमशः न्यूनतम तथा अधिकतम मान हैं, तो क्रमित युग्म $( m , M )$ बराबर है
यदि $a,b,c$ धनात्मक वास्तविक संख्यायें हैं, तो $x, y $ और $z$ में निम्नलिखित समीकरण निकाय
$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1$, $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1, - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$
$\left| {\,\begin{array}{*{20}{c}}{a - b}&{b - c}&{c - a}\\{x - y}&{y - z}&{z - x}\\{p - q}&{q - r}&{r - p}\end{array}\,} \right| = $
माना सभी $\mathrm{a} \in \mathrm{R}-\{0\}$, जिनके लिए रैखिक समीकरण निकाय $a x+2 a y-3 a z=1$
$ (2 a+1) x+(2 a+3) y+(a+1) z=2 $
$ (3 a+5) x+(a+5) y+(a+2) z=3$
का केवल एक हल है तथा अनंत हल है, के समुच्चय क्रमशः $S_1$ तथा $S_2$ है। तो
माना $\theta \in\left(0, \frac{\pi}{2}\right)$ है। यदि रैखिक समीकरण निकाय
$\left(1+\cos ^{2} \theta\right) x+\sin ^{2} \theta y+4 \sin 3 \theta z=0$
$\cos ^{2} \theta x+\left(1+\sin ^{2} \theta\right) y+4 \sin 3 \theta z=0$
$\cos ^{2} \theta x+\sin ^{2} \theta y+(1+4 \sin 3 \theta) z=0$ का अतुच्छ हल है, तो, $\theta$ का मान है