Let $\lambda $ be a real number for which the system of linear equations $x + y + z = 6$
 ; $4x + \lambda y - \lambda z = \lambda - 2$ ; $3x + 2y -4z = -5$ Has indefinitely many solutions. Then $\lambda $ is a root of the quadratic equation

  • [JEE MAIN 2019]
  • A

    ${\lambda ^2} - \lambda  - 6\, = 0$

  • B

    ${\lambda ^2} - 3\lambda  - 4 = 0$

  • C

    ${\lambda ^2} + 3\lambda  - 4 = 0$

  • D

    ${\lambda ^2} + \lambda  - 6 = 0$

Similar Questions

If $x, y, z$ are in arithmetic progression with common difference $d , x \neq 3 d ,$ and the
determinant of the matrix $\left[\begin{array}{ccc}3 & 4 \sqrt{2} & x \\ 4 & 5 \sqrt{2} & y \\ 5 & k & z\end{array}\right]$ is zero, then the value of $k ^{2}$ is ..... .

  • [JEE MAIN 2021]

If the system of equations, $x + 2y - 3z = 1$, $(k + 3)z = 3,$ $(2k + 1)x + z = 0$is inconsistent, then the value of $ k$  is

Let $A_1, A_2, A_3$ be the three A.P. with the same common difference $d$ and having their first terms as $A , A +1, A +2$, respectively. Let $a , b , c$ be the $7^{\text {th }}, 9^{\text {th }}, 17^{\text {th }}$ terms of $A_1, A_2, A_3$, respectively such that $\left|\begin{array}{lll} a & 7 & 1 \\ 2 b & 17 & 1 \\ c & 17 & 1\end{array}\right|+70=0$ If $a=29$, then the sum of first $20$ terms of an $AP$ whose first term is $c - a - b$ and common difference is $\frac{ d }{12}$, is equal to $........$.

  • [JEE MAIN 2023]

If $\Delta = \left| {\,\begin{array}{*{20}{c}}x&y&z\\p&q&r\\a&b&c\end{array}\,} \right|,$ then $\left| {\,\begin{array}{*{20}{c}}x&{2y}&z\\{2p}&{4q}&{2r}\\a&{2b}&c\end{array}\,} \right|$equals

$\left| {\,\begin{array}{*{20}{c}}{{{\sin }^2}x}&{{{\cos }^2}x}&1\\{{{\cos }^2}x}&{{{\sin }^2}x}&1\\{ - 10}&{12}&2\end{array}\,} \right| = $