$\left| {\,\begin{array}{*{20}{c}}{a - b}&{b - c}&{c - a}\\{x - y}&{y - z}&{z - x}\\{p - q}&{q - r}&{r - p}\end{array}\,} \right| = $

  • A

    $a(x + y + z) + b(p + q + r) + c$

  • B

    $0$

  • C

    $abc + xyz + pqr$

  • D

    इनमें से कोई नहीं

Similar Questions

समीकरण निकाय $kx + y + z =1, x + ky + z = k$ तथा $x + y + zk = k ^{2}$ का कोई हल नहीं है, यदि $k$ बराबर है

  • [JEE MAIN 2021]

माना $m$ तथा $M \left|\begin{array}{ccc}\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x \end{array}\right|$ के, क्रमशः न्यूनतम तथा अधिकतम मान हैं, तो क्रमित युग्म $( m , M )$ बराबर है 

  • [JEE MAIN 2020]

यदि $\alpha ,\beta \ne 0$ तथा $f\left( n \right) = {\alpha ^n} + {\beta ^n}$ तथा

$\left| {\begin{array}{*{20}{c}}3&{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}\\{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}\\{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}&{1 + f\left( 4 \right)}\end{array}} \right|\;$

$= K{\left( {1 - \alpha } \right)^2}$ ${\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2}$ है, तो $K$ बराबर है

  • [JEE MAIN 2014]

$\left| {\,\begin{array}{*{20}{c}}{1/a}&{{a^2}}&{bc}\\{1/b}&{{b^2}}&{ca}\\{1/c}&{{c^2}}&{ab}\end{array}\,} \right| = $

यदि ${D_p} = \left| {\,\begin{array}{*{20}{c}}p&{15}&8\\{{p^2}}&{35}&9\\{{p^3}}&{25}&{10}\end{array}\,} \right|$,  तो .${D_1} + {D_2} + {D_3} + {D_4} + {D_5} = $