જો $\lambda $ એ વાસ્તવિક સંખ્યા છે કે જેથી સુરેખ સમીકરણો $x + y + z = 6$
; $4x + \lambda y - \lambda z = \lambda - 2$ ; $3x + 2y -4z = -5$ ને અનંત ઉકેલ ધરાવે છે તો $\lambda $ તો એ . . . દ્રીઘાત સમીકરણનું બીજ થશે.
${\lambda ^2} - \lambda - 6\, = 0$
${\lambda ^2} - 3\lambda - 4 = 0$
${\lambda ^2} + 3\lambda - 4 = 0$
${\lambda ^2} + \lambda - 6 = 0$
જો $\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2\end{array}\right|=\frac{9}{8}(103 x+81)$, હોય,તો $\lambda$, $\frac{\lambda}{3}$ એ $.........$ સમીકરણના બીજ છે.
$k \in R$ ની કઈ કિમંત માટે આપેલ સમીકરણ સંહતિ $3 x-y+4 z=3$ ; $x+2 y-3 x=-2$ ; $6 x+5 y+k z=-3$ ને અનંત ઉકેલ ધરાવે છે.
સમીકરણોની જોડ $12x + by + cz = 0$ ; $ax + 24y + cz = 0$ ; $ax + by + 36z = 0$ . (કે જ્યાં $a$ , $b$ , $c$ એ વાસ્તવિક સંખ્યા છે કે જેથી $a \ne 12$ , $b \ne 24$ , $c \ne 36$ ). જો સમીકરણો ની જોડ સુસંગત હોય અને $z \ne 0$ હોય તો $\frac{1}{{a - 12}} + \frac{2}{{b - 24}} + \frac{3}{{c - 36}}$ મેળવો.
$\left| {\,\begin{array}{*{20}{c}}1&a&b\\{ - a}&1&c\\{ - b}&{ - c}&1\end{array}\,} \right| = $