$k$ का वह मान जिसके लिये वृत्त ${x^2} + {y^2} + kx + 4y + 2 = 0$ व $2({x^2} + {y^2}) - 4x - 3y + k = 0$ लम्बवत् प्रतिच्छेदित करते हैं, है
$\frac{{10}}{3}$
$\frac{{ - 8}}{3}$
$\frac{{ - 10}}{3}$
$\frac{8}{3}$
दी गयी आकृति में $S_1$ और $S_2$ दो अलग क्षेत्रफल वाले वृत्त हैं और $AB , CD , PQ$ इनकी स्पर्श रेखाएँ हैं। यदि $AB$ की लंबाई $10$ हो तो $RS$ की लंबाई का मान होगा:
वृत्तों ${x^2} + {y^2} - 8x - 2y + 7 = 0$ व ${x^2} + {y^2} - 4x + 10y + 8 = 0$ के प्रतिच्छेद बिन्दुओं से गुजरने वाले एवं $y$ - अक्ष पर केन्द्र वाले वृत्त का समीकरण है
एक वृत्त मूलबिन्दु से जाता है एवं इसका केन्द्र $y = x$ पर है। यदि यह ${x^2} + {y^2} - 4x - 6y + 10 = 0$ को लम्बवत् काटता है, तो वृत्त का समीकरण होगा
यदि वृत्तों ${x^2} + {y^2} + 2ax + cy + a = 0$ और ${x^2} + {y^2} - 3ax + dy - 1 = 0$ दो भिन्न बिन्दुओं $P$ व $Q$ पर प्रतिच्छेद करते हैं, तब रेखा $5x + by - a = 0$ $P$ व $Q$ से गुजरेगी
यदि एक वृत्त $C$, जिसकी त्रिज्या 3 है, एक अन्य वृत्त $x^{2}+y^{2}+2 x-4 y-4=0$ को बाह्य रूप से बिंदु $(2,2)$ पर स्पर्श करता है, तो वृत्त $C$ द्वारा $x$-अक्ष पर काटे गए अंतःखंड की लंबाई है