वृत्तों ${x^2} + {y^2} - 6x - 2y + 1 = 0$ तथा ${x^2} + {y^2} + 2x - 8y + 13 = 0$ के लिए निम्न में से कौनसा सत्य है

  • A

    एक वृत्त दूसरे के अन्दर स्थित है

  • B

    एक वृत्त दूसरे के पूर्णतया बाहर स्थित है

  • C

    दोनों वृत्त एक-दूसरे को दो बिन्दुओं पर काटते हैं

  • D

    दोनों वृत्त एक-दूसरे को स्पर्श करते हैं

Similar Questions

उस वृत्त का समीकरण जो मूल बिन्दु से गुजरता है एवं जिसका केन्द्र $x + y = 4$ पर है एवं वृत्त ${x^2} + {y^2} - 4x + 2y + 4 = 0$ को लम्बवत् काटता है, होगा

समाक्ष निकाय के तीन वृत्तों पर एक स्थिर बिन्दु से खींची गयी स्पर्शियों की लम्बाइयाँ ${t_1},{t_2},{t_3}$ हैं एवं यदि $P$, $Q$ व $R$ केन्द्र हों, तो $QRt_1^2 + RPt_2^2 + PQt_3^2 = $

बिन्दु $(0, 0)$ तथा $(1, 0)$ से होकर जाने वाले तथा वृत्त ${x^2} + {y^2} = 9$ को स्पर्श करने वाले वृत्त का केन्द्र है

  • [AIEEE 2002]

उस वृत्त का समीकरण जो वृत्त ${x^2} + {y^2} - 6x + 6y + 17 = 0$ को बाह्यत: स्पर्श करता है एवं जिस पर रेखायें ${x^2} - 3xy - 3x + 9y = 0$ अभिलम्ब हैं, है

एक रेखा $L$ दो वृत्तों ${x^2} + {y^2} = 25$ व ${x^2} + {y^2} - 8x + 7 = 0$ के प्रतिच्छेद बिन्दुओं से जाती है। दूसरे वृत्त के केन्द्र से इस रेखा $L$ पर डाले गये लम्ब की लम्बाई होगी