જો $S$ એ $k$ એ બધીજ વાસ્તવિક કિમંતો નો ગણ છે કે જેથી રેખાઓની સહંતિ $x +y + z = 2$ ; $2x +y - z = 3$ ; $3x + 2y + kz = 4$ એ એકાકી ઉકેલ ધરાવે છે તો  $S$ એ  . . . .

  • [JEE MAIN 2018]
  • A

    ખાલી ગણ

  • B

    $R- \{0\}$ ને સમાન થાય

  • C

    $\{0\}$ ને સમાન હોય

  • D

     $R$ થાય

Similar Questions

જો $a, b, c > 0$ અને $\Delta  = \left| \begin{gathered}
  a + b\,\,b\,\,c \hfill \\
  b\, + \,c\,\,c\,\,\,a \hfill \\
  c + a\,\,a\,\,b \hfill \\ 
\end{gathered}  \right| ,$ હોય તો આપલે પૈકી ક્યૂ વિધાન અસત્ય થાય.

જો $q_1$ , $q_2$ , $q_3$ એ સમીકરણ $x^3 + 64$ = $0$ ના બીજ હોય તો $\left| {\begin{array}{*{20}{c}}
  {{q_1}}&{{q_2}}&{{q_3}} \\ 
  {{q_2}}&{{q_3}}&{{q_1}} \\ 
  {{q_3}}&{{q_1}}&{{q_2}} 
\end{array}} \right|$ ની કિમંત મેળવો.

જો $\left| {{\kern 1pt} \begin{array}{*{20}{c}}1&2&3\\2&x&3\\3&4&5\end{array}\,} \right| = 0 $ તો $ x =$

સુરેખ સમીકરણ સંહતિ  $a x+y+z=1$, $x+a y+z=1, x+y+a z=\beta$ માટે,નીચેના પૈકી કયું વિધાન સાચું નથી?

  • [JEE MAIN 2023]

અહી $\theta \in\left(0, \frac{\pi}{2}\right)$ આપેલ છે. જો સમીકરણ સંહતિ

$\left(1+\cos ^{2} \theta\right) x+\sin ^{2} \theta y+4 \sin 3 \theta z=0$

$\cos ^{2} \theta x+\left(1+\sin ^{2} \theta\right) y+4 \sin 3 \theta z=0$

$\cos ^{2} \theta x+\sin ^{2} \theta y+(1+4 \sin 3 \theta) z=0$

ને શૂન્યતર ઉકેલ ધરાવે છે તો $\theta$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]