જો $a, b, c > 0$ અને $\Delta = \left| \begin{gathered}
a + b\,\,b\,\,c \hfill \\
b\, + \,c\,\,c\,\,\,a \hfill \\
c + a\,\,a\,\,b \hfill \\
\end{gathered} \right| ,$ હોય તો આપલે પૈકી ક્યૂ વિધાન અસત્ય થાય.
$\Delta = -[a^3 + b^3 + c^3 - 3abc$]
$\Delta\leq 0$
$\Delta = 0 \Rightarrow\ a + b + c = 0$
જો $a = b = c$ તો $\Delta = 0$
$a$ અને $b$ ની કઈ કિમંતો માટે આપેલ સમીકરણ સંહતીઓ $2 x+3 y+6 z=8$ ; $x+2 y+a z=5$ ; $3 x+5 y+9 z=b$ નો બીજગણ ખાલી ગણ થાય.
$\left| {\,\begin{array}{*{20}{c}}{19}&{17}&{15}\\9&8&7\\1&1&1\end{array}\,} \right| = $
જો $a \ne b \ne c,$ તો સમીકરણ $\left| {\,\begin{array}{*{20}{c}}0&{x - a}&{x - b}\\{x + a}&0&{x - c}\\{x + b}&{x + c}&0\end{array}\,} \right| = 0$ નું સમાધાન કરે તેવી $x$ ની કિમત મેળવો.
$k $ ની કેટલી કિંમતો માટે સમીકરણ સંહતી $\left( {k + 1} \right)x + 8y = 4k\;,\;kx + \left( {k + 3} \right)y $$= 3k - 1$ ને એક પણ ઉકેલ નથી.
જો $\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2\end{array}\right|=\frac{9}{8}(103 x+81)$, હોય,તો $\lambda$, $\frac{\lambda}{3}$ એ $.........$ સમીકરણના બીજ છે.