यदि ${(x + a)^n}$ के विस्तार में विषम पदों का योग $P$ तथा सम पदों का योग $Q$ हो, तो $({P^2} - {Q^2})$ का मान होगा
${({x^2} + {a^2})^n}$
${({x^2} - {a^2})^n}$
${(x - a)^{2n}}$
${(x + a)^{2n}}$
यदि ${(1 - x + {x^2})^n} = {a_0} + {a_1}x + {a_2}{x^2} + .... + {a_{2n}}{x^{2n}}$, तो ${a_0} + {a_2} + {a_4} + .... + {a_{2n}}$ बराबर है
यदि $\frac{1}{n+1}{ }^n C_n+\frac{1}{n}{ }^n C_{n-1}+\ldots+\frac{1}{2}{ }^n C_1+{ }^n C_0=\frac{1023}{10}$ है, तो $\mathrm{n}$ बराबर है :
माना $\left(1+x+2 x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{40} x^{40}$ है। तो $a_{1}+a_{3}+a_{5}+\ldots+a_{37}$ बराबर है
$^{10}{C_1}{ + ^{10}}{C_3}{ + ^{10}}{C_5}{ + ^{10}}{C_7}{ + ^{10}}{C_9} = $
व्यंजक $(5+x)^{500}+x(5+x)^{499}+x^2(5+x)^{498}+\ldots . x^{500}$ $x > 0$ में $x ^{101}$ का गुणांक होगा -