${(x + a)^n}$ ના વિસ્તરણમાં , $P$ એ અયુગ્મ પદનો સરવાળો દર્શાવે છે અને $Q$ એ યુગ્મ પદનો સરવાળો દર્શાવે છે તો $({P^2} - {Q^2})$ = . . .. .
${({x^2} + {a^2})^n}$
${({x^2} - {a^2})^n}$
${(x - a)^{2n}}$
${(x + a)^{2n}}$
${(1 + x + {x^2})^n}$ ના સહગુણકનો સરવાળો મેળવો.
${(1 + x - 3{x^2})^{3148}}$ ના સહગુણકનો સરવાળો મેળવો.
${({x^2} + x - 3)^{319}}$ ના વિસ્તરણમાં બધા સહગુણકનો સરવાળો કરો.
જો ${\left( {1 + x} \right)^n} = {c_0} + {c_1}x + {c_2}{x^2} + {c_3}{x^3} + ...... + {c_n}{x^n}$ , હોય તો ${c_0} - 3{c_1} + 5{c_2} - ........ + {( - 1)^n}\,(2n + 1){c_n}$ ની કિમત મેળવો
જો ${a_k} = \frac{1}{{k(k + 1)}},$( $k = 1,\,2,\,3,\,4,.....,\,n$), તો ${\left( {\sum\limits_{k = 1}^n {{a_k}} } \right)^2} = $