यदि $\frac{1}{n+1}{ }^n C_n+\frac{1}{n}{ }^n C_{n-1}+\ldots+\frac{1}{2}{ }^n C_1+{ }^n C_0=\frac{1023}{10}$ है, तो $\mathrm{n}$ बराबर है :
$6$
$9$
$8$
$7$
श्रेणी $2 .{ }^{20} C _{0}+5 .{ }^{20} C _{1}+8 .{ }^{20} C _{2}+11 .{ }^{20} C _{3}+\ldots +62 .{ }^{20} C _{20}$ का योग बराबर है
माना कि $X=\left({ }^{10} C_1\right)^2+2\left({ }^{10} C_2\right)^2+3\left({ }^{10} C_3\right)^2+\cdots+10\left({ }^{10} C_{10}\right)^2,$ जहाँ ${ }^{10} C_r, r \in\{1,2, \ldots, 10\}$, द्विपद गुणांकों (binomial coefficients) को दर्शाते हैं। तब $\frac{1}{1430} X$ का मान है ..........|
माना $(\mathrm{x}+3)^{\mathrm{n}-1}+(\mathrm{x}+3)^{\mathrm{n}-2}(\mathrm{x}+2)+$ $(x+3)^{n-3} \cdot(x+2)^2+\ldots \ldots .+(x+2)^{n-1}$ के प्रसार में $x^r$ का गुणांक $\alpha_r$ है। यदि $\sum_{\mathrm{r}=0}^{\mathrm{n}} \alpha_{\mathrm{r}}=\beta^{\mathrm{n}}-\gamma^{\mathrm{n}}, \beta, \gamma \in \mathrm{N}$ है, तो $\beta^2+\gamma^2$ बराबर है ........
${(1 + x)^5}$ के विस्तार में पदों के गुणांकों का योगफल होगा
यदि $\frac{{ }^{11} \mathrm{C}_1}{2}+\frac{{ }^{11} \mathrm{C}_2}{3}+\ldots . .+\frac{{ }^{11} \mathrm{C}_9}{10}=\frac{\mathrm{n}}{\mathrm{m}}$ है तथा $\operatorname{gcd}(\mathrm{n}, \mathrm{m})=1$ है, तो $\mathrm{n}+\mathrm{m}$ बराबर है ............