${\left( {\frac{a}{x} + bx} \right)^{12}}$ ના વિસ્તરણમાં $x^{-10}$ સહગુણક મેળવો.

  • A

    $12{a^{11}}$

  • B

    $12{b^{11}}a$

  • C

    $12{a^{11}}b$

  • D

    $12{a^{11}}{b^{11}}$

Similar Questions

${\left( {{x^2} + \frac{a}{x}} \right)^5}$ ના વિસ્તરણમાં $x$ નો સહગુણક મેળવો.

જો ${(1 + x)^{18}}$ ના વિસ્તરણમાં ${(2r + 4)^{th}}$ અને ${(r - 2)^{th}}$ ના સહગુણકો સમાન હોય તો $r  = $. . . .

ધારોકે $\left(x^{\frac{2}{3}}+\frac{2}{x^3}\right)^{30}$ના વિસ્તરણમાં $x^{-\alpha}$ વાળો પદ હોય તેવો $\alpha > 0$ નાનામાં નાની સંખ્યા $\beta x^{-\alpha}, \beta \in N$ છે. તો $\alpha$ ની  કિમંત મેળવો.

  • [JEE MAIN 2023]

જો ${(1 + x)^{14}}$ ના વિસ્તરણમાં ${T_r},\,{T_{r + 1}},\,{T_{r + 2}}$ ના સહગુણકો સમાંતરશ્રેણી માં હોય, તો $r = $. . . .

જો $\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}}+\frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}$ ના દ્રીપદી વિસ્તરણમાં, $x^{10}$ નો સહગુણક $5^{ k } l$ હોય, જ્યાં $l, k \in N$ છે તથા $l$ અને $5$ પરસ્પર અવિભાજય છે,તો $k=\dots\dots$

  • [JEE MAIN 2022]