ધારોકે $\left(x^{\frac{2}{3}}+\frac{2}{x^3}\right)^{30}$ના વિસ્તરણમાં $x^{-\alpha}$ વાળો પદ હોય તેવો $\alpha > 0$ નાનામાં નાની સંખ્યા $\beta x^{-\alpha}, \beta \in N$ છે. તો $\alpha$ ની  કિમંત મેળવો.

  • [JEE MAIN 2023]
  • A

    $2$

  • B

    $4$

  • C

    $6$

  • D

    $8$

Similar Questions

${(1 + x)^n}$ ના દ્રીપદી વિતરણમાં દ્રીતીય , તૃતીય અને ચતૃથ પદો સમાંતર શ્રેણીમાં હોય તો $n$ ની કિમંત મેળવો.

  • [IIT 1994]

જો ${(1 + x)^n}$ ના વિસ્તરણમાં $2^{nd}$, $3^{rd}$ અને $4^{th}$ પદના સહગુણક સમાંતર શ્રેણી માં હોય તો ${n^2} - 9n$ = . . . .

$\left(x^4-\frac{1}{x^3}\right)^{15}$ ના વિસ્તરણમાં $x^{18}$ નો સહગુણક $........$ છે.

  • [JEE MAIN 2023]

${(a + b)^n}$ ના વિસ્તરણમાં ચોથાપદ નો સહગુણક 56 હોય, તો $n$ મેળવો.

જો ${\left( {a{x^2} + \frac{1}{{bx}}} \right)^{11}}$ ના વિસ્તરણમાં ${x^{7}}$ નો સહગુણક એ ${\left( {ax - \frac{1}{{b{x^2}}}} \right)^{11}}$ ના વિસ્તરણમાં ${x^{-7}}$ નો સહગુણક સમાન હોય , તો $ab =$

  • [AIEEE 2005]