$3$  કક્ષાવાળા નિશ્રાયકમાં પ્રથમ સ્તંભમાં બે પદોનો સરવાળો છે , બીજા સ્તંભમાં ત્રણ પદનો સરવાળો છે અને ત્રીજા સ્તંભમાં ત્રણ પદનો સરવાળો છે તો તેને $ n $ નિશ્રાયક માં અલગ કરવામાં આવે તો $n$ ની કિમત મેળવો.

  • A

    $1$

  • B

    $9$

  • C

    $16$

  • D

    $24$

Similar Questions

સુરેખ સમીકરણ સંહતિ $x+y+z=5, x+2 y+\lambda^2 z=9, x+3 y+\lambda z=\mu$ ધ્યાને લો, જ્યાં $\lambda, \mu \in \mathbb{R}$. તો નીચેના પૈકકી કયું વિધાન સાચું નથી?

  • [JEE MAIN 2024]

$\lambda $ ની કેટલી વાસ્તવિક કિમંતો માટે સમીકરણો $2x + 4y - \lambda  z = 0$ ;$4x + \lambda y + 2z = 0$ ; $\lambda x + 2y+ 2z = 0$ ને અનંત ઉકેલ મળે.

  • [JEE MAIN 2017]

ધારો કે $D = \left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|$ અને $D' = \left| {\,\begin{array}{*{20}{c}}{{a_1} + p{b_1}}&{{b_1} + q{c_1}}&{{c_1} + r{a_1}}\\{{a_2} + p{b_2}}&{{b_2} + q{c_2}}&{{c_2} + r{a_2}}\\{{a_3} + p{b_3}}&{{b_3} + q{c_3}}&{{c_3} + r{a_3}}\end{array}\,} \right|$, તો . . .

ધારોકે $s$ એ $\theta \in[-\pi, \pi]$ ની એવી તમામ કિંમતોનો ગણ છે જેના માટે સુરેખ સમીકરણ સંહતિ

$x+y+\sqrt{3} z=0$

$-x+(\tan \theta) y+\sqrt{7} z=0$

$x+y+(\tan \theta) z=0$

ને અસાહજિક $(non-trivial)$ ઉકેલ છે.તો $\frac{120}{\pi} \sum_{\theta \in s} \theta=.........$

  • [JEE MAIN 2023]

જો $k_1$, $k_2$ એ $k$ ની મહતમ અને ન્યૂનતમ કિમતો છે કે જેથી સમીકરણોની સહંતિ  $x + ky = 1$ ; $kx + y = 2$;  $x + y = k$  એ સુસંગત થાય છે તો $k_1^2 + k_2^2$ મેળવો.