In a third order determinant, each element of the first column consists of sum of two terms, each element of the second column consists of sum of three terms and each element of the third column consists of sum of four terms. Then it can be decomposed into $n $determinants, where $ n$  has the value

  • A

    $1$

  • B

    $9$

  • C

    $16$

  • D

    $24$

Similar Questions

Consider the system of linear equations

$x+y+z=5, x+2 y+\lambda^2 z=9$

$x+3 y+\lambda z=\mu$, where $\lambda, \mu \in R$. Then, which of the following statement is NOT correct?

  • [JEE MAIN 2024]

The number of values of $\alpha$ for which the system of equations:   $x+y+z=\alpha$ ;  $\alpha x+2 \alpha y+3 z=-1$ ;  $x+3 \alpha y+5 z=4$    is inconsistent, is

  • [JEE MAIN 2022]

Evaluate $\left|\begin{array}{cc}x & x+1 \\ x-1 & x\end{array}\right|$

Let $A=\left(\begin{array}{ccc}{[x+1]} & {[x+2]} & {[x+3]} \\ {[x]} & {[x+3]} & {[x+3]} \\ {[x]} & {[x+2]} & {[x+4]}\end{array}\right),$ where $[t]$ denotes the greatest integer less than or equal to $\mathrm{t}$. If $\operatorname{det}(\mathrm{A})=192$, then the set of values of $\mathrm{x}$ is the interval

  • [JEE MAIN 2021]

If $\omega $ be a complex cube root of unity, then $\left| {\,\begin{array}{*{20}{c}}1&\omega &{ - {\omega ^2}/2}\\1&1&1\\1&{ - 1}&0\end{array}\,} \right| = $