$2n$ प्रेक्षणों की एक श्रेणी में, आधे $a$ के बराबर तथा शेष आधे $-a$ के बराबर हैं। यदि प्रेक्षणों का मानक विचलन $2$ हैए तब $|a|$ =
$\frac{{\sqrt 2 }}{n}$
$\sqrt 2 $
$2$
$\frac{1}{n}$
$20$ प्रेक्षणों का प्रसरण $5$ है। यदि प्रत्येक प्रेक्षण को $2$ से गुणा किया गया हो तो प्राप्त प्रेक्षणों का प्रसरण ज्ञात कीजिए।
प्रथम $n$ प्राकृत संख्याओं का प्रसरण है
आँकड़ों के एक समूह में $n$ प्रेक्षण : $x _{1}, x _{2}, \ldots, x _{ n }$ हैं। यदि $\sum_{ i =1}^{ n }\left( x _{ i }+1\right)^{2}=9 n$ तथा $\sum_{ i =1}^{ n }\left( x _{ i }-1\right)^{2}=5 n$ है, तो इन आँकड़ों का मानक विचलन है
सात प्रेक्षणों का माध्य तथा प्रसरण क्रमश: $8$ तथा $16$ हैं। यदि इनमें से पाँच प्रेक्षण $2,4,10,12,14$ हैं तो शेष दो प्रेक्षण ज्ञात कीजिए।
प्रथम $n$ प्राकृत संख्याओं का मानक विचलन $(S.D.)$ है