आँकड़ों के एक समूह में $n$ प्रेक्षण : $x _{1}, x _{2}, \ldots, x _{ n }$ हैं। यदि $\sum_{ i =1}^{ n }\left( x _{ i }+1\right)^{2}=9 n$ तथा $\sum_{ i =1}^{ n }\left( x _{ i }-1\right)^{2}=5 n$ है, तो इन आँकड़ों का मानक विचलन है
$5$
$\sqrt 5$
$\sqrt 7$
$2$
निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
प्रथम $n$ प्राकृत संख्याएँ
माना $5$ प्रेक्षणों $x_1, x_2, x_3, x_4, x_5$ का माध्य तथा प्रसरण क्रमश: $\frac{24}{5}$ तथा $\frac{194}{25}$ है। यदि प्रथम चार प्रेक्षणों का माध्य तथा प्रसरण क्रमश: $\frac{7}{2}$ तथा $a$ है, तो $\left(4 a+x_5\right)$ है:
माना छः संख्याएं $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \mathrm{a}_4, \mathrm{a}_5, \mathrm{a}_6$ समान्तर श्रेणी में है और $\mathrm{a}_1+\mathrm{a}_3=10$ है। यदि इन छ: संख्याओं का माध्य $\frac{19}{2}$ है और इनका प्रसरण $\sigma^2$ है, तब $8 \sigma^2$ का मान है :
निम्नलिखित आँकडों के लिए मानक विचलन ज्ञात कीजिए
${x_i}$ | $3$ | $8$ | $13$ | $18$ | $25$ |
${f_i}$ | $7$ | $10$ | $15$ | $10$ | $6$ |
बारंबारता बंटन
चर $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
बारंबारता $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
जहाँ $0 < x _{1} < x _{2} < x _{3} < \ldots < x _{15}=10$ तथा $\sum_{ i =1}^{15} f _{ i }>0$ है, का मानक विचलन, निम्न में से कौन-सा नहीं हो सकता ?