$2n$ અવલોકનની એક શ્રેણી આપેલ છે,તે પૈકી $n$ અવલોકન $a$ છે અને બાકીના અવલોકન $-a$ છે.જો પ્રમાણિત વિચલન $2$ હોય તો $|a| =$
$\frac{{\sqrt 2 }}{n}$
$\sqrt 2 $
$2$
$\frac{1}{n}$
નીચે આપેલ આવૃતિ વિતરણ માટે મધ્યક અને પ્રમાણિત વિચલન મેળવો
$\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|} \hline \text { Marks } & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ \hline \text { Frequency } & 1 & 6 & 6 & 8 & 8 & 2 & 2 & 3 & 0 & 2 & 1 & 0 & 0 & 0 & 1 \\ \hline \end{array}$
$2, 4, 6, 8, 10$ નું વિચરણ શોધો.
ટૂંકી રીતનો ઉપયોગ કરીને મધ્યક, વિચરણ અને પ્રમાણિત વિચલન શોધો.
ઊંચાઈ સેમીમાં |
$70-75$ | $75-80$ | $80-85$ | $85-90$ | $90-95$ | $95-100$ | $100-105$ | $105-110$ | $110-115$ |
બાળકોની સંખ્યા |
$3$ | $4$ | $7$ | $7$ | $15$ | $9$ | $6$ | $6$ | $3$ |
આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :
પ્રથમ $n-$ પ્રાકૃતિક સંખ્યાઓ
એક વર્ગમાં $60$ વિધ્યાર્થીઓ છે એક પરીક્ષામાં તેમણે મેળવેલ ગુણનું માહિતી વિતરણ આપેલ છે :
$\begin{array}{|l|l|l|l|l|l|l|} \hline \text { Marks } & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \text { Frequency } & x-2 & x & x^{2} & (x+1)^{2} & 2 x & x+1 \\ \hline \end{array}$
જ્યાં $x$ એ ધન પૂર્ણાક સંખ્યા છે તો આ માહિતી માટે પ્રમાણિત વિચલન અને મધ્યક મેળવો