यदि वेग $[ V ]$, समय $[ T ]$ तथा बल $[ F ]$ मूल राशियां मानी जाएं, तो द्रव्यमान की विमा होगी।
$\left[{FT}^{-1} {V}^{-1}\right]$
$[FTV$ $\left.^{-1}\right]$
$\left[{FT}^{2} {V}\right]$
$\left[{FVT}^{-1}\right]$
मान लीजिये कि एक इकाई प्रणाली में द्रव्यमान तथा कोणीय संवेग विमा (dimensionless) रहित है। यदि लम्बाई की विमा $L$ हो तब निम्नलिखित कथनों में से कौनसा (से) सही है( हैं) ?
$(1)$ बल की विमा (dimension) $L ^{-3}$ है।
$(2)$ ऊर्जा की विमा (dimension) $L ^{-2}$ है।
$(3)$ शक्ति की विमा (dimension) $L ^{-5}$ है।
$(4)$ रेखीय संवेग की विमा (dimension) $L ^{-1}$ है।
यदि गति $( V )$, त्वरण $( A )$ तथा बल $( F )$ को मूल भौतिक इकाइयाँ मानें तो, यंग प्रत्यास्थता गुणांक की विमा होगी।
यदि किसी नैनो संधारित्र की धारिता, एक ऐसे मात्रक $u$ में मापी जाय, जो इलेक्ट्रॉन आवेश $e$, बोर-त्रिज्या $a _{0}$, प्लांक स्थिरांक $h$ तथा प्रकाश की चाल $c$ के संयोजन से बना है तो
$c , G$ तथा $\frac{ e ^{2}}{4 \pi \varepsilon_{0}}$ से बनने वाली एक भौतिक राशि की विमायें वही हैं जो लम्बाई की है। ( जहाँ $c -$ प्रकाश का वेग, $G$ - सार्वत्रिक गुरूत्वीय स्थिरांक तथा $e$ आवेश है $)$ यह भौतिक राशि होगी
समीकरण $W = \frac{1}{2}K{x^2}$ में $K$ की विमा होगी