मान लीजिये कि एक इकाई प्रणाली में द्रव्यमान तथा कोणीय संवेग विमा (dimensionless) रहित है। यदि लम्बाई की विमा $L$ हो तब निम्नलिखित कथनों में से कौनसा (से) सही है( हैं) ?
$(1)$ बल की विमा (dimension) $L ^{-3}$ है।
$(2)$ ऊर्जा की विमा (dimension) $L ^{-2}$ है।
$(3)$ शक्ति की विमा (dimension) $L ^{-5}$ है।
$(4)$ रेखीय संवेग की विमा (dimension) $L ^{-1}$ है।
$1,2,4$
$1,2,3$
$1,2$
$1,3$
तार के कम्पन की आवृत्ति $\nu = \frac{p}{{2l}}{\left[ {\frac{F}{m}} \right]^{1/2}}$ से दी जाती है। यहाँ $p$ तार के लूपों की संख्या एवं l लम्बाई है। $ m$ का विमीय सूत्र होगा
किसी वृत्त की समीकरण $\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2$, हैं जहां $\mathrm{a}$ त्रिज्या है। मूलबिन्दु का मान $(0,0)$, से बदलने पर यदि समीकरण परिवर्तित होती है तो नए समीकरण $(x-A t)^2+\left(y-\frac{t}{B}\right)^2=a^2$ में $A$ एवं $B$ की सही विमाएं ज्ञात कीजिए। $t$ की विमाएं $\left[\mathrm{T}^{-1}\right]$ है।
यंग - लाप्लास के नियमानुसार $R$ त्रिज्या वाले साबुन के बुलबुले के अंदर आंतरिक दाब निम्नलिखित समीकरण द्वारा दिया जाता है : $\triangle P=4 \sigma / R$, जहाँ $\sigma$ साबून का पृष्ठ तनाव स्थिरांक है। एतवोस संख्या (Eotvos number) $E_o$ एक विमाहीन (dimensionless) संख्या है जो द्रव की सतह पर उभरे हुए साबुन के बुलबुले के आकार का वर्णन करता है। यह गुरुत्वीय त्वरण $(g)$, घनत्व $(\rho)$ और लाक्षणिक लंबाई (characteristic length) $L$, जो कि बुलबुले की त्रिज्या भी हो सकती है, के द्वारा निरूपित किया जाता है। $E_o$ का एक संभावित व्यंजक है
एक पिण्ड की स्थिति, जो त्वरण 'a' से गतिशील है, व्यंजक $x = K{a^m}{t^n}$ से प्रदर्शित है, जहाँ t समय है। $m$ एवं $n$ की विमा होगी
यदि बल $( F )$, लम्बाई $( L )$ तथा समय $( T )$ मूल राशियाँ हैं तब घनत्व की विमा क्या होगी ?