If velocity $[V],$ time $[T]$ and force $[F]$ are chosen as the base quantities, the dimensions of the mass will be
$\left[{FT}^{-1} {V}^{-1}\right]$
$[FTV$ $\left.^{-1}\right]$
$\left[{FT}^{2} {V}\right]$
$\left[{FVT}^{-1}\right]$
The characteristic distance at which quantum gravitational effects are significant, the Planck length, can be determined from a suitable combination of the fundamental physical constants $G, h$ and $c$ . Which of the following correctly gives the Planck length?
The equation of a circle is given by $x^2+y^2=a^2$, where $a$ is the radius. If the equation is modified to change the origin other than $(0,0)$, then find out the correct dimensions of $A$ and $B$ in a new equation: $(x-A t)^2+\left(y-\frac{t}{B}\right)^2=a^2$.The dimensions of $t$ is given as $\left[ T ^{-1}\right]$.
According to Newton, the viscous force acting between liquid layers of area $A$ and velocity gradient $\Delta v/\Delta z$ is given by $F = - \eta A\frac{{\Delta v}}{{\Delta z}}$ where $\eta $ is constant called coefficient of viscosity. The dimension of $\eta $ are
If $\varepsilon_0$ is permittivity of free space, $e$ is charge of proton, $G$ is universal gravitational constant and $m_p$ is mass of a proton then the dimensional formula for $\frac{e^2}{4 \pi \varepsilon_0 G m_p{ }^2}$ is
The frequency of vibration $f$ of a mass $m$ suspended from a spring of spring constant $K$ is given by a relation of this type $f = C\,{m^x}{K^y}$; where $C$ is a dimensionless quantity. The value of $x$ and $y$ are