જે $10$ પ્રાકૃતિક સંખ્યાઓ $1, 1, 1,...., 1,k$ નું વિચરણ $10$ કરતા ઓછું હોય, તો $k$ની શક્ય મહત્તમ કિંમત ...... છે.
$12$
$11$
$14$
$21$
જો બે $20$ અવલોકનો ધરાવતા ગણો છે જેના પ્રમાણિત વિચલન સમાન અને $5$ છે તેમાંથી એક ગણનો મધ્યક $17$ અને બીજા ગણનો મધ્યક $22$ છે તો બંને ગણોના સમૂહનો પ્રમાણિત વિચલન મેળવો
$100$ અવલોકનોના સમૂહનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $20$ અને $3 $ છે. પછીથી જાણ થાય છે કે ત્રણ અવલોકનો $21, 21$ અને $18$ ખોટાં હતાં. આ ખોટાં અવલોકનોને દૂર કરવામાં આવે તો મધ્યક અને પ્રમાણિત વિચલન શોધો.
જો પ્રત્યેક અવલોકન $x_{1}, x_{2}, \ldots ., x_{n}$ માં કોઈ ધન કે ત્રણ સંખ્યા $'a'$ ઉમેરવામાં આવે, તો સાબિત કરો કે વિચરણ બદલાતું નથી.
અવલોકન $a,b,8,5,10 $ નો મધ્યક $ 6$ છે અને વિચરણ $6.80 $ છે. તો નીચે આપેલ પૈકી એક $a$ અને $b$ શકય કિંમત થશે.
આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.
વર્ગ | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
આવૃત્તિ | $5$ | $8$ | $15$ | $16$ | $6$ |