જે $10$ પ્રાકૃતિક સંખ્યાઓ $1, 1, 1,...., 1,k$ નું વિચરણ $10$ કરતા ઓછું હોય, તો $k$ની શક્ય મહત્તમ કિંમત ...... છે.
$12$
$11$
$14$
$21$
અવલોકનોનાં બે ગણના આંકડાઓ નીચે મુજબ આપેલ છે :
કદ | મધ્યક | વિચરણ | |
અવલોકન $I$ | $10$ | $2$ | $2$ |
અવલોકન $II$ | $n$ | $3$ | $1$ |
જો બંને અવલોકનોનાં સંયુક્ત ગણનો વિચરણ $\frac{17}{9}$ હોય, તો $n$ નું મૂલ્ય ..... છે.
$7$ અવલોકનો, $1, 2, 3, 4, 5, 6. 7 $ નું પ્રમાણિત વિચલન :
આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.
વર્ગ |
$0-30$ | $30-60$ | $60-90$ | $90-120$ | $120-150$ | $50-180$ | $180-210$ |
આવૃત્તિ |
$2$ | $3$ | $5$ | $10$ | $3$ | $5$ | $2$ |
ગ્રૂપના પહેલા સેમ્પલમાં કુલ $100$ વસ્તુ છે કે જેનો મધ્યક $15$ અને પ્રમાણિત વિચલન $3 $ છે અને જો પૂરા ગ્રૂપમાં કુલ $250$ વસ્તુ છે કે જેનો મધ્યક $15.6$ એન પ્રમાણિત વિચલન $\sqrt{13.44}$ હોય તો બીજા સેમ્પલનું પ્રમાણિત વિચલન મેળવો.
જો $n$ અવલોકનો $x_1, x_2, …… x_n$ નો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $\bar x$અને $\sigma$ હોય તો અવલોકનોના વર્ગનો સરવાળો કેટલો થાય ?