જો બે $20$ અવલોકનો ધરાવતા ગણો છે જેના પ્રમાણિત વિચલન સમાન અને $5$ છે તેમાંથી એક ગણનો મધ્યક $17$ અને બીજા ગણનો મધ્યક $22$ છે તો બંને ગણોના સમૂહનો પ્રમાણિત વિચલન મેળવો 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given, $n_{1}=20, \sigma_{1}=5, \bar{x}_{1}=17$ and $n_{2}=20, \sigma_{2}=5, \bar{x}_{2}=22$

We know that, $\sigma=\sqrt{\frac{n_{1} s_{1}^{2}+n_{2} s_{2}^{2}}{n_{1}+n_{2}}+\frac{n_{1} n_{2}\left(\bar{x}_{1}-\bar{x}_{2}\right)^{2}}{\left(n_{1}+n_{2}\right)^{2}}}$

$\begin{array}{l}=\sqrt{\frac{20 \times(5)^{2}+20 \times(5)^{2}}{20+20}+\frac{20 \times 20(17-22)^{2}}{(20+20)^{2}}} \\=\sqrt{\frac{1000}{40}+\frac{400 \times 25}{1600}}=\sqrt{25+\frac{25}{4}}=\sqrt{\frac{125}{4}}=\sqrt{31.25}=5.59\end{array}$

Similar Questions

જો $n$ અવલોકનો $x_1, x_2,.....x_n$ એવા છે કે જેથી $\sum\limits_{i = 1}^n {x_i^2}  = 400$ અને $\sum\limits_{i = 1}^n {{x_i}}  = 100$ થાય તો નીચેનામાંથી $n$ ની શકય કિમત મેળવો. 

મધ્યસ્થ વડે $40, 62, 54, 90, 68, 76 $ અવલોકનોના સરેરાશ વિચલનનો ચલનાંક કેટલો થાય ?

$15$ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્મે $12$ અને $3$ ભણવામાં આવ્યા છે. ફેરચકાસણી કરતા એવું માલુમ થાય છે કે એક અવલોકન $12$ ની જગ્યાએ $10$ વાંચવામાં આવ્યું હતું. જો સાચાં અવલોક્નોના મધ્યક અને વિચરણ અનુક્રમે $\mu$ અને $\sigma^2$ વડે દર્શાવાય, તો $15\left(\mu+\mu^2+\sigma^2\right)=$.........................

  • [JEE MAIN 2024]

$20$ અવલોકનનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $10$ અને $2.5$ છે. એક અવલોકન ભૂલ થી $35$ ને બદલે $25$ લેવાય ગયું છે. જો $\alpha$ અને $\sqrt{\beta}$ એ સાચી માહિતીના મધ્યક અને પ્રમાણિત વિચલન છે તો $(\alpha, \beta)$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જો $x_i $ નું પ્રમાણિત વિચલન $10$  હોય તો ($50 + 5x_i$)નું વિચરણ કેટલું હશે ?