यदि बिन्दु $O (0,0)$ तथा $P (1+\sqrt{5}, 2)$ पर वृत्त $x^2+y^2-2 x-4 y=0$ की खीची गई स्पर्श रेखाये है, जो बिन्दु $Q$ पर मिलती हो, तब त्रिभुज $OPQ$ का क्षेत्रफल होगा -
$\frac{3+\sqrt{5}}{2}$
$\frac{4+2 \sqrt{5}}{2}$
$\frac{5+3 \sqrt{5}}{2}$
$\frac{7+3 \sqrt{5}}{2}$
माना वृत्त $x ^2+ y ^2-4 x +3=0$ के दो बिंदुओं $A$ तथा $B$ पर स्पर्श रेखाएँ $O (0,0)$ पर मिलती हैं। तब त्रिभुज $OAB$ का क्षेत्रफल है
वृत्त ${x^2} + {y^2} = {a^2}$ पर बिन्दु $(\alpha ,\beta )$ से खींची गयी स्पर्श रेखाओं के बीच कोण है
युगल स्पर्श रेखायें मूल बिन्दु से वृत्त ${x^2} + {y^2} + 20(x + y) + 20 = 0$ पर खींची गयी हैं। युगल स्पर्श रेखाओं का समीकरण है
वृत्त ${x^2} + {y^2} = {a^2}$ के बिन्दु $(h,h)$ पर स्पषी की प्रवणता होगी
माना वृत्त $x ^2+ y ^2= r ^2$ जहाँ $r >\frac{\sqrt{5}}{2}$ है का केन्द्र $O$ है। माना इस वृत्त की जीवा $PQ$ तथा रेखा का समीकरण, जो बिन्दु $P$ तथा $Q$ से गुजरता है, $2 x +4 y =5$ है। यदि त्रिभुज $OPQ$ के परिवृत्त का केन्द्र रेखा $x +2 y =4$ पर स्थित हो, तो $r$ का मान होगा. . . . .