वृत्त ${x^2} + {y^2} = {a^2}$ के बिन्दु $(h,h)$ पर स्पषी की प्रवणता होगी
$0$
$1$
$-1$
$h$ पर निर्भर
यदि तीन वृत्तों ${x^2} + {y^2} - 2{\lambda _i}\,x = {c^2},(i = 1,\,2,\,3)$ के केन्द्रों की मूलबिन्दु से दूरियाँ गुणोत्तर श्रेणी में हों, तब वृत्त ${x^2} + {y^2} = {c^2}$ पर किसी बिन्दु से उन पर खींची गयीं स्पर्श रेखाओं की लम्बाइयाँ होंगी
वृत्त ${x^2} + {y^2} = 5$ के बिन्दु $(1,-2) $ पर स्पर्श रेखा वृत्त ${x^2} + {y^2} - 8x + 6y + 20 = 0$ को
बिन्दु $(h, k)$ से वृत्त ${x^2} + {y^2} = {a^2}$ पर खींची गयी स्पर्श रेखाओं तथा उनके स्पर्श बिन्दुओं को मिलाने वाली रेखा द्वारा बने त्रिभुज का क्षेत्रफल है
निम्न में से कौनसी रेखा $m$ के सभी मानों के लिये वृत्त ${x^2} + {y^2} = 25$ की स्पर्श रेखा है
बिंदु $P (-1,1)$ से वत्त $x ^{2}+ y ^{2}-2 x -6 y +6=0$ पर दो स्पर्श रेखाएँ खींची जाती हैं। यदि ये स्पर्श रेखाएँ वत्त को बिंदुओं $A$ तथा $B$ पर स्पर्श करती हैं तथा वत्त पर $D$ एक बिंदु है जिसके लिए रेखाखंडों $AB$ तथा $AD$ की लम्बाइयाँ बराबर हैं, तो त्रिभुज $ABD$ का क्षेत्रफल बराबर है