यदि समीकरण $\cos p\theta + \cos q\theta = 0,\;p > 0,\;q > 0$ के लिए हल समान्तर श्रेणी में हों, तो अंकिक रूप से न्यूनतम सार्वान्तर होगा
$\frac{\pi }{{p + q}}$
$\frac{{2\pi }}{{p + q}}$
$\frac{\pi }{{2(p + q)}}$
$\frac{1}{{p + q}}$
यदि $\cos \theta = - \frac{1}{{\sqrt 2 }}$ और $\tan \theta = 1$, तो $\theta $ का सर्वव्यापक मान है
$\sin x - 3\sin 2x + \sin 3x = $ $\cos x - 3\cos 2x + \cos 3x$ का व्यापक हल है
यदि समीकरण $4 \cos \theta+5 \sin \theta=1$. का हल $\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ है, तो $\tan \alpha$ का मान है
यदि $n$ एक पूर्णांक है, तब $\cos x - \sin x = \frac{1}{{\sqrt 2 }}$ का व्यापक हल है
निम्नलिखित समीकरणों का मुख्य तथा व्यापक हल ज्ञात कीजिए
$\tan x=\sqrt{3}$.