निम्नलिखित समीकरणों का मुख्य तथा व्यापक हल ज्ञात कीजिए
$\tan x=\sqrt{3}$.
$\tan x=\sqrt{3}$
It is known that $\tan \frac{\pi}{3}=\sqrt{3}$ and $\tan \left(\frac{4 \pi}{3}\right)=\tan \left(\pi+\frac{\pi}{3}\right)=\tan \frac{\pi}{3}=\sqrt{3}$
Therefore, the principal solutions are $x=\frac{\pi}{3}$ and $\frac{4 \pi}{3}$
Now, $\tan x=\tan \frac{\pi}{3}$
$\Rightarrow x=n \pi+\frac{\pi}{3},$ where $n \in Z$
Therefore, the general solution is $x=n \pi+\frac{\pi}{3},$ where $n \in Z.$
यदि $\cot \theta + \tan \theta = 2{\rm{cosec}}\theta $, तो $\theta $ के व्यापक मान हैं
यदि ${\sin ^2}\theta = \frac{1}{4},$ तो $\theta $ का सर्वव्यापक मान है
यदि $\sin \theta + \cos \theta = \sqrt 2 \cos \alpha $, तो $\theta $ का व्यापक मान है
यदि $\operatorname{cosec} \theta=\frac{ p + q }{ p - q } \quad( p \neq q \neq 0)$ है, तो $\left|\cot \left(\frac{\pi}{4}+\frac{\theta}{2}\right)\right|$ बराबर है
समीकरणों $\sin \theta = - \frac{1}{2}$ तथा $\tan \theta = \frac{1}{{\sqrt 3 }}$ को सन्तुष्ट करने वाला $\theta $ का सर्वव्यापक मान है