If the solution for $\theta $ of $\cos p\theta + \cos q\theta = 0,\;p > 0,\;q > 0$ are in $A.P.$, then the numerically smallest common difference of $A.P.$ is

  • A

    $\frac{\pi }{{p + q}}$

  • B

    $\frac{{2\pi }}{{p + q}}$

  • C

    $\frac{\pi }{{2(p + q)}}$

  • D

    $\frac{1}{{p + q}}$

Similar Questions

The total number of solution of $sin^4x + cos^4x = sinx\, cosx$ in $[0, 2\pi ]$ is equal to

Find the general solution of the equation $\cos 4 x=\cos 2 x$

The general value of $\theta $  that satisfies both the equations $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ is $(n \in  I)$

Find the general solution of the equation $\cos 3 x+\cos x-\cos 2 x=0$

Find the general solution of $\cos ec\, x=-2$