यदि बिंदु $(1,4)$ वृत्त $x^{2}+y^{2}-6 x-10 y+p=0$ के अन्त: भाग में स्थित है तथा वृत्त, निर्देशांक अक्षों को न तो स्पर्श करता है, और न ही काटता है, तो $p$ के सभी संभव मानों का समुच्चय निम्न अतंराल है

  • [JEE MAIN 2014]
  • A

    $(0,25)$

  • B

    $(25, 39)$

  • C

    $(9, 25)$

  • D

    $(25, 29)$

Similar Questions

रेखा $y = mx + c$ उस वृत्त की, जिसकी त्रिज्या $r$ तथा केन्द्र $(a, b)$ है, अभिलम्ब होगी यदि

वृत्त ${x^2} + {y^2} = 36$ की उन स्पर्श रेखाओं के समीकरण जो $x$-अक्ष से ${45^o}$ के कोण पर झुकी हों, होंगे

यदि $R$ त्रिज्या का एक वृत्त मूलबिन्दु $O$ से गुजरता है तथा निर्देशी अक्षों को बिन्दु $A$ तथा $B$ पर काटता है तो रेखा $A B$ पर स्थित बिन्दु $O$ से लम्ब के पाद का बिन्दुपथ होगा

  • [JEE MAIN 2019]

स्पर्श-रेखा PT वत्त $x^2+y^2=4$ को बिन्दु $P(\sqrt{3}, 1)$ पर स्पर्श करती है। सरल रेखा $L, P T$ के लम्बवत् है और वत्त $(x-3)^2+y^2=1$ की स्पर्श-रेखा है।

$1.$ दोनों वत्तो की एक उभयनिष्ठ स्पर्श-रेखा (common tangent) निम्न है

$(A)$ $x=4$ $(B)$ $y=2$ $(C)$ $x+\sqrt{3} y=4$ $(D)$ $x+2 \sqrt{2} y=6$

$2.$ $L$ का एक सम्भावित समीकरण निम्न है -

$(A)$ $x-\sqrt{3} y=1$ $(B)$ $x+\sqrt{3} y=1$ $(C)$ $x-\sqrt{3} y=-1$ $(D)$ $x+\sqrt{3} y=5$

इस प्रश्न के उतर दीजिये $1$ ओर $2.$

  • [IIT 2012]

रेखा $x = y$ एक वृत्त को बिन्दु $(1,1)$ पर स्पर्श करती है। यदि यह वृत्त बिन्दु $(1,-3)$ से भी होकर जाता है, तो इसकी त्रिज्या है

  • [JEE MAIN 2019]