यदि $R$ त्रिज्या का एक वृत्त मूलबिन्दु $O$ से गुजरता है तथा निर्देशी अक्षों को बिन्दु $A$ तथा $B$ पर काटता है तो रेखा $A B$ पर स्थित बिन्दु $O$ से लम्ब के पाद का बिन्दुपथ होगा
${({x^2} + {y^2})^2} = 4{R^2}{x^2}{y^2}$
${({x^2} + {y^2})^3} = 4{R^2}{x^2}{y^2}$
${({x^2} + {y^2})^2} = 4R{x^2}{y^2}$
$({x^2} + {y^2})(x + y) = {R^2}xy$
एक रेखा $lx + my + n = 0$, वृत्त ${x^2} + {y^2} = {a^2}$ के बिन्दु $P$ व $Q$ पर मिलती है। बिन्दु $P$ व $Q$ पर स्पर्श रेखायें खींची जाती हैं जो $R$ पर मिलती हैं, तो $R$ के निर्देशांक हैं
यदि बिन्दु $(f,g)$ से वृत्तों ${x^2} + {y^2} = 6$ तथा ${x^2} + {y^2} + 3x + 3y = 0$ पर खींची गयी स्पर्श रेखाओं की लम्बाइयों का अनुपात $2 : 1$ हो, तो
यदि रेखा $lx + my = 1$, वृत्त ${x^2} + {y^2} = {a^2}$ की एक स्पर्श रेखा हो तो बिन्दु $(l, m)$ का बिन्दुपथ है
वृत्त ${x^2} + {y^2} = 5$ के बिन्दु $(1, -2)$ पर स्पर्श रेखा का वृत्त ${x^2} + {y^2} - 8x + 6y + 20 = 0$ पर स्पर्श बिन्दु है
वृत्त ${x^2} + {y^2} = {a^2}$ की स्पर्श रेखा का समीकरण जो अक्षों के साथ ${a^2}$ क्षेत्रफल का त्रिभुज बनाती है, होगा