स्पर्श-रेखा PT वत्त $x^2+y^2=4$ को बिन्दु $P(\sqrt{3}, 1)$ पर स्पर्श करती है। सरल रेखा $L, P T$ के लम्बवत् है और वत्त $(x-3)^2+y^2=1$ की स्पर्श-रेखा है।
$1.$ दोनों वत्तो की एक उभयनिष्ठ स्पर्श-रेखा (common tangent) निम्न है
$(A)$ $x=4$ $(B)$ $y=2$ $(C)$ $x+\sqrt{3} y=4$ $(D)$ $x+2 \sqrt{2} y=6$
$2.$ $L$ का एक सम्भावित समीकरण निम्न है -
$(A)$ $x-\sqrt{3} y=1$ $(B)$ $x+\sqrt{3} y=1$ $(C)$ $x-\sqrt{3} y=-1$ $(D)$ $x+\sqrt{3} y=5$
इस प्रश्न के उतर दीजिये $1$ ओर $2.$
$(D,A)$
$(B,D)$
$(B,C)$
$(C,D)$
माना $y=x+2,4 y=3 x+6$ तथा $3 y=4 x+1$ वृत्त $(\mathrm{x}-\mathrm{h})^2+(\mathrm{y} \mathrm{k})^2=\mathrm{r}^2$ की तीन स्पर्श रेखाएँ हैं, तो $\mathrm{h}+\mathrm{k}$ बराबर है :
रेखा $3x + 4y = 1$ के समान्तर वृत्त $5{x^2} + 5{y^2} = 1$ की स्पर्श रेखा का समीकरण है
वृत्त ${x^2} + {y^2} = {a^2}$ के बिन्दु $(a\cos \alpha ,a\sin \alpha )$ पर स्पर्श रेखा की प्रवणता है
रेखा $x = y$ एक वृत्त को बिन्दु $(1,1)$ पर स्पर्श करती है। यदि यह वृत्त बिन्दु $(1,-3)$ से भी होकर जाता है, तो इसकी त्रिज्या है
यदि रेखा $ax + by = 0$ वृत्त ${x^2} + {y^2} + 2x + 4y = 0$ को स्पर्श करती है और वृत्त ${x^2} + {y^2} - 4x + 2y - 3 = 0$ का अभिलम्ब है, तब $(a,b)$ का मान है