यदि दीर्घवृत्त के लघु अक्ष की लम्बाई, इसकी नाभियों के बीच की दूरी की आधी है, तो इस दीर्घवत्त की उत्केन्द्रता है :
$\frac{\sqrt{5}}{3}$
$\frac{\sqrt{3}}{2}$
$\frac{1}{\sqrt{3}}$
$\frac{2}{\sqrt{5}}$
दीर्घवृत (ellipse) $\frac{x^2}{9}+\frac{y^2}{4}=1$ पर विचार कीजिये। माना कि $S(p, q)$ प्रथम चतुर्थांश (first quadrant) में एक इस प्रकार का बिंदु है कि $\frac{p^2}{9}+\frac{q^2}{4}>1$ है । बिंदु $S$ से दीर्घवृत के लिए दो स्पर्श रेखाएं (tangents) खींची गयी हैं, जिनमें से एक रेखा, दीर्घवृत पर लघु अक्ष (minor axis) के एक अंत्य बिंदु (end point) पर मिलती है तथा दूसरी रेखा चौथे चतुर्थांश (fourth quadrant) में दीर्घवृत के एक बिंदु $T$ पर मिलती है। माना कि $R$ दीर्घवृत का वह शीर्ष (vertex) है जिसका $x$-निर्देशांक ( $x$-coordinate) धनात्मक (positive) है, और दीर्घवृत का केंद्र $O$ है। यदि त्रिभुज $\triangle O R T$ का क्षेत्रफल $\frac{3}{2}$ है, तब निम्नलिखित विकल्पों में से कौन सा सही है?
दीर्घवृत्त $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{20}} = 1$ की नियताओं के बीच की दूरी है
माना दीर्घवृत्त $\frac{x^2}{36}+\frac{y^2}{4}=1$ के बिंदु $(3 \sqrt{3}, 1)$ पर स्पर्श रेखा तथा अभिलंब $\mathrm{y}$-अक्ष को क्रमशः बिंदुओं $\mathrm{A}$ तथा $B$ पर मिलते हैं। माना $A B$ को एक व्यास लेकर खींचा गया वृत्त $C$ है तथा रेखा $x=2 \sqrt{5}$, वृत्त $C$ को बिंदुओं $\mathrm{P}$ तथा $\mathrm{Q}$ पर काटती है। यदि वृत्त के बिंदुओं $P$ तथा $Q$ पर स्पर्श रेखाओं का प्रतिच्छेदन बिंदु $(\alpha, \beta)$ है, तो $\alpha^2-\beta^2$ बराबर है
यदि दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के किसी बिन्दु $P$ पर खींचे गये अभिलम्ब निर्देशांकों को $G$ व $g$ पर मिलते हैं, तो $PG:Pg = $
दीर्घवृत्त की जीवा के ध्रुवों का बिन्दुपथ होगा