यदि $\theta $ तथा $\phi $, दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के संयुग्मी व्यासों के सिरों के उत्केन्द्र कोण हैं, तो $\theta - \phi $ बराबर होगा
$ \pm \frac{\pi }{2}$
$ \pm \pi $
$0$
इनमें से कोई नहीं
माना $E _{1}: \frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1, a > b$ एक दीर्घवत्त है। माना $E _{2}$ एक और दीर्घवत्त है, जो $E _{1}$ के दीर्घ अक्ष के छोरों को स्पर्श करता है तथा $E_{2}$ की नाभियोँ, $E_{1}$ के लघु अक्ष के छोरों पर है। यदि $E _{1}$ तथा $E _{2}$ की उत्केन्द्रता बराबर है, तो उसका मान है -
यदि दीर्घवृत्त $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{ b ^2}=1$, रेखा $\frac{ x }{7}+\frac{ y }{2 \sqrt{6}}=1$ को $x$-अक्ष पर तथा रेखा $\frac{ x }{7}-\frac{ y }{2 \sqrt{6}}=1$ को $y$-अक्ष पर मिलता है, तो दीर्घवृत्त की उत्केन्द्रता है।
वृत ${\left( {x - 1} \right)^2} + {y^2} = 1$ के व्यास को अर्द्ध लघु अक्ष लेकर तथा वृत ${x^2} + {\left( {y - 2} \right)^2} = 4$ के एक व्यास को अर्द्ध दीर्घ अक्ष लेकर एक दीर्घ वृत्त खिंचा गया। यदि दीर्घवृत्त का केन्ट्र मूलबिन्दु पर है तथा इसके अक्ष निर्देशांक अक्ष है, तो दीर्घवृत का समीकरण है
दीर्घवृत्त का समीकरण जिसकी उत्केन्द्रता $\frac{1}{2}$ तथा नाभियाँ $( \pm {\rm{ }}1,\;0)$ हैं, है
$\frac{|x|}{2}+\frac{|y|}{3}=1$ के बाहर और दीर्घवृत्त $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ के अंदर के क्षेत्र का क्षेत्रफल (वर्ग इकाई में) है