माना कि दीर्घ वृत्त $\frac{x^2}{9}+\frac{y^2}{5}=1$ की नाभियाँ (foci) ( $\left.f_1, 0\right)$ और $\left(f_2, 0\right)$ है, जहाँ $f_1>0$ और $f_2<0$ है। माना कि $P_1$ एवं $P_2$ दो परवलय (parabola) है जिनकी नाभियाँ क्रमशः $\left(f_1, 0\right)$ तथा $\left(2 f_2, 0\right)$ हैं तथा दोनों के शीर्प (vertex) $(0,0)$ है। माना कि $P_1$ की स्पर्श रेखा $T_1$ बिन्दु $\left(2 f_2, 0\right)$ से, एवं $P_2$ की स्पर्श रेखा $T_2$ विन्दु $\left(f_1, 0\right)$ से गुजरती हैं। यदि $T_1$ की प्रवणता (slope) $m_1$ हो, हो और $T _2$ की प्रवणता $m _2$ हो, तव $\left(\frac{1}{ m _1^2}+ m _2^2\right)$ का मान है

  • [IIT 2015]
  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

माना वक्र $9 x^2+16 y^2=144$ की एक स्पर्श रेखा निर्देशांक अक्षों को बिन्दुओं $\mathrm{A}$ तथा $\mathrm{B}$ पर मिलती है। तो रेखाखंड $\mathrm{AB}$ की न्यूनतम लंबाई_______________. 

  • [JEE MAIN 2023]

दीर्घवृत्त $3{x^2} + 4{y^2} = 12$ के लिये नाभिलम्ब की लम्बार्इ है

माना $\mathrm{C}$ सबसे बड़ा वृत्त है, जिसका केन्द्र $(2,0)$ पर है तथा जो दीर्घवृत $\frac{\mathrm{x}^2}{36}+\frac{\mathrm{y}^2}{16}=1$ के अंतर्गत है। यदि बिन्दु $(1, \alpha)$ वृत्त $C$ पर है, तो $10 \alpha^2$ बराबर है_______________. 

  • [JEE MAIN 2023]

यदि अतिपरवलय ${x^2} - {y^2} = 9$ की एक स्पर्श जीवा $x = 9$ है, तो सम्बन्धित युगल स्पर्श रेखा $(Pair\,\, of\,\, tangents)$ का समीकरण है

  • [IIT 1999]

दीर्घवृत्त का समीकरण जिसकी उत्केन्द्रता $\frac{1}{2}$ तथा नाभियाँ $( \pm {\rm{ }}1,\;0)$ हैं, है