If the normal at any point $P$ on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ meets the co-ordinate axes in $G$ and $g$ respectively, then $PG:Pg = $
$a:b$
${a^2}:{b^2}$
${b^2}:{a^2}$
$b:a$
Let the equations of two ellipses be ${E_1}:\,\frac{{{x^2}}}{3} + \frac{{{y^2}}}{2} = 1$ and ${E_2}:\,\frac{{{x^2}}}{16} + \frac{{{y^2}}}{b^2} = 1,$ If the product of their eccentricities is $\frac {1}{2},$ then the length of the minor axis of ellipse $E_2$ is
Find the coordinates of the foci, the rertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $16 x^{2}+y^{2}=16$
Let $a , b$ and $\lambda$ be positive real numbers. Suppose $P$ is an end point of the latus rectum of the parabola $y^2=4 \lambda x$, and suppose the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ passes through the point $P$. If the tangents to the parabola and the ellipse at the point $P$ are perpendicular to each other, then the eccentricity of the ellipse is
The length of the minor axis (along $y-$axis) of an ellipse in the standard form is $\frac{4}{\sqrt{3}} .$ If this ellipse touches the line, $x+6 y=8 ;$ then its eccentricity is
Let $E_{1}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \mathrm{a}\,>\,\mathrm{b} .$ Let $\mathrm{E}_{2}$ be another ellipse such that it touches the end points of major axis of $E_{1}$ and the foci $E_{2}$ are the end points of minor axis of $E_{1}$. If $E_{1}$ and $E_{2}$ have same eccentricities, then its value is :