જો સંભાવના વિતરણ
વર્ગ: | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
આવૃતિ | $2$ | $3$ | $x$ | $5$ | $4$ |
નો મધ્યક $28$ હોય,તો તેનું વિચરણ $.........$ છે.
$150$
$152$
$153$
$151$
$2n$ અવલોકનનો વાળી શ્રેણીમાં તે પૈકી અડધા અવલોકનો $a$ બરાબર અને બાકીના $-a $ છે. જો અવલોકનોનું પ્રમાણિત વિચલન $2$ હોય તો $| a | $ બરાબર શું થાય ?
ધારો કે $x_1, x_2 ……, x_n $ એ વિચલન $X$ વડે લીધેલા મૂલ્ય છે અને $y_1, y_2, …, y_n $ એ વિચલન $ Y $ વડે લીધેલા એવા મૂલ્યો છે કે જેથી $y_i = ax_i + b,$ કે જ્યાં $ i = 1, 2, ….., n$ થાય તો...
નીચે આપેલ આવૃતિ વિતરણ માટે મધ્યક અને પ્રમાણિત વિચલન મેળવો
$\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|} \hline \text { Marks } & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ \hline \text { Frequency } & 1 & 6 & 6 & 8 & 8 & 2 & 2 & 3 & 0 & 2 & 1 & 0 & 0 & 0 & 1 \\ \hline \end{array}$
જો $\sum\limits_{i\, = \,1}^{18} {({x_i}\, - \,\,8)\,\, = \,\,9} $ અને $\,\sum\limits_{i\, = \,1}^{18} {{{({x_i}\, - \,\,8)}^2}\, = \,\,45} ,\,$ હોય, તો $\,{{\text{x}}_{\text{1}}},\,\,{x_2},\,........\,\,{x_{18}}$ નું પ્રમાણિત વિચલન શોધો .
ધારોકે ગણ $A$ અને $B$ બન્ને માં $5$ ઘટકો છે.ધારોકે ગણ $A$ અને $B$ ના ધટકોના મધ્યક અનુક્રમે $5$ અને $8$ છે તથા ગણ $A$ અને $B$ ના ઘટકોનું વિચરણ અનુક્રમે $12$ અને $20$ છે.$A$ ના પ્રત્યેક ઘટકોમાંથી $3$ બાદ કરીને અને $B$ના પ્રત્યેક ઘટકોમાં $2$ ઉમેરીને $10$ ધટકોવાળો નવો ગણ $C$ બનાવવામાં આવે છે.તો $C$ ના ધટકોના મધ્યક અને વિચરણનો સરવાળો $.......$ છે.