यदि रेखा $3x + 4y - 1 = 0$ वृत्त ${(x - 1)^2} + {(y - 2)^2} = {r^2}$ को स्पर्श करती है, तो $r$ का मान होगा
$2$
$5$
$\frac{{12}}{5}$
$\frac{2}{5}$
यदि $2x - 4y = 9$ व $6x - 12y + 7 = 0$ एक ही वृत्त की स्पर्श रेखायें हों, तो इसकी त्रिज्या होगी
सरल रेखा $x +2 y =1$ निर्देशांक अक्षों को $A$ तथा $B$ पर काटती है। मूल बिन्दु, $A$ तथा $B$ से होकर जाने वाला वृत्त खींचा गया है, तो मूल बिन्दु पर वृत्त की स्पर्श रेखा की $A$ तथा $B$ से लम्बवत् दूरियों का योग है
माना $r$ त्रिज्या के वृत्त के व्यास $PR$ के सिरों पर स्पर्श रेखायें $PQ$ तथा $RS$ हैं। यदि $PS$ तथा $RQ$, वृत्त की परिधि के बिन्दु $X$ पर प्रतिच्छेदित हो, तो $2r$ बराबर है
वृत्त $x ^{2}+ y ^{2}=4$ के बिंदु $(\sqrt{3}, 1)$ पर खींची गई स्पर्श रेखा और अभिलंब तथा $x$-अक्ष एक त्रिभुज बनाते हैं। इस त्रिभुज का (वर्ग इकाईयों में) क्षेत्रफल है
यदि रेखा $3x - 4y = \lambda $, वृत्त ${x^2} + {y^2} - 4x - 8y - 5 = 0$ को स्पर्श करती है, तो $\lambda $ के मान हैं