यदि $2x - 4y = 9$ व $6x - 12y + 7 = 0$ एक ही वृत्त की स्पर्श रेखायें हों, तो इसकी त्रिज्या होगी
$\frac{{\sqrt 3 }}{5}$
$\frac{{17}}{{6\sqrt 5 }}$
$\frac{{2\sqrt 5 }}{3}$
$\frac{{17}}{{3\sqrt 5 }}$
निम्नलिखित कथनों पर विचार करो
कथन $(A)$ : वृत्त ${x^2} + {y^2} = 1$, $x$-अक्ष के समान्तर दो स्पर्श रेखाएँ रखता है
कारण $(R)$ : वृत्त के बिन्दु $(0, \pm 1)$ पर $\frac{{dy}}{{dx}} = 0$
तब निम्नलिखित में से कौनसा कथन सहीं है
उस वृत्त का समीकरण, जो निर्देशांक्षों को एवं रेखा $\frac{x}{3} + \frac{y}{4} = 1$ को स्पर्श करता है एवं जिसका केन्द्र प्रथम चतुर्थांश में है, ${x^2} + {y^2} - 2cx - 2cy + {c^2} = 0$ है, तो $c$ का मान होगा
माना $y=x+2,4 y=3 x+6$ तथा $3 y=4 x+1$ वृत्त $(\mathrm{x}-\mathrm{h})^2+(\mathrm{y} \mathrm{k})^2=\mathrm{r}^2$ की तीन स्पर्श रेखाएँ हैं, तो $\mathrm{h}+\mathrm{k}$ बराबर है :
रेखा $5x + 12y + 8 = 0$ के लम्बवत् वृत्त ${x^2} + {y^2} - 22x - 4y + 25 = 0$ की स्पर्श रेखाओं के समीकरण हैं
यदि रेखा $4x + 3y + \lambda = 0$ वृत्त $2({x^2} + {y^2}) = 5$ को स्पर्श करे तो $\lambda $ का मान होगा