माना $r$ त्रिज्या के वृत्त के व्यास $PR$ के सिरों पर स्पर्श रेखायें $PQ$ तथा $RS$ हैं। यदि $PS$ तथा $RQ$, वृत्त की परिधि के बिन्दु $X$ पर प्रतिच्छेदित हो, तो $2r$ बराबर है

  • [IIT 2001]
  • A

    $\sqrt {PQ.RS} $

  • B

    $\frac{{PQ + RS}}{2}$

  • C

    $\frac{{2PQ.\,\,RS}}{{PQ + RS}}$

  • D

    $\sqrt {\frac{{P{Q^2} + R{S^2}}}{2}} $

Similar Questions

रेखा $ax + by + c = 0$ वृत्त ${x^2} + {y^2} = {r^2}$ पर अभिलम्ब है। रेखा $ax + by + c = 0$ द्वारा वृत्त पर काटे गये अन्त:खण्ड की लम्बाई है

रेखा $lx + my + n = 0$, वृत्त ${x^2} + {y^2} = {a^2}$ की एक स्पर्श रेखा होगी यदि

यदि रेखा $y = mx + c$ वृत्त ${x^2} + {y^2} - 4y = 0$ को स्पर्श करती है, तो $c$ का मान होगा

यदि रेखा $y = mx + c$ वृत्त ${x^2} + {y^2} - 2x - 4y + 3 = 0$ को बिन्दु $(2, 3)$ पर स्पर्श करती हो, तो $c =$

माना वृत्त $x ^2+ y ^2= r ^2$ जहाँ $r >\frac{\sqrt{5}}{2}$ है का केन्द्र $O$ है। माना इस वृत्त की जीवा $PQ$ तथा रेखा का समीकरण, जो बिन्दु $P$ तथा $Q$ से गुजरता है, $2 x +4 y =5$ है। यदि त्रिभुज $OPQ$ के परिवृत्त का केन्द्र रेखा $x +2 y =4$ पर स्थित हो, तो $r$ का मान होगा. . . . . 

  • [IIT 2020]