यदि वक्र $x ^{2}-6 x + y ^{2}+8=0$ तथा $x ^{2}-8 y + y ^{2}+$ $16- k =0,( k >0)$ एक दूसरे को एक बिन्दू पर स्पर्श करते हैं, तो $k$ का अधिकतम मान है

  • [JEE MAIN 2020]
  • A

    $25$

  • B

    $36$

  • C

    $30$

  • D

    $42$

Similar Questions

दो वृत्त $x^{2}+y^{2}=a x$ तथा $x^{2}+y^{2}=c^{2}(c > 0)$ स्पर्श करते हैं यदि

  • [AIEEE 2011]

यदि $P$ और $Q$ वृत्त $x^{2}+y^{2}+3 x+7 y+2 p-5=0$ तथा $x^{2}+y^{2}+2 x+2 y-p^{2}=0$ के प्रतिच्छेद बिन्दु हैं तब $P, Q$ और $(1,1)$ से जाने वाला एक वृत्त है

  • [AIEEE 2009]

त्रिज्या $2$ का एक वृत्त ${C_1}$ $x$ - अक्ष और $y$ - अक्ष दोनों को स्पर्श करता है। दूसरा वृत्त ${C_2}$ जिसकी त्रिज्या $2$ से अधिक है, वृत्त ${C_1}$ व दोनों अक्षों को स्पर्श करता है। वृत्त ${C_2}$ की त्रिज्या होगी[

वृत्तों $x^{2}+y^{2}-4 x-6 y-12=0$ तथा $x^{2}+y^{2}+6 x+18 y+26=0$ की उभयनिष्ठ स्पर्श रेखाओं की संख्या है

  • [JEE MAIN 2015]

दो वृत्त ${x^2} + {y^2} - 2x - 3 = 0$ व ${x^2} + {y^2} - 4x - 6y - 8 = 0$ इस प्रकार हैं कि