જો વક્રો $x^{2}-6 x+y^{2}+8=0$ અને $\mathrm{x}^{2}-8 \mathrm{y}+\mathrm{y}^{2}+16-\mathrm{k}=0,(\mathrm{k}>0)$ એકબીજાના એક બિંદુમાં સ્પર્શે છે તો $\mathrm{k}$ ની મહતમ કિમંત મેળવો.
$25$
$36$
$30$
$42$
બિંદુઓ $(0,0),(1,0)$ માંથી પસાર થતા અને વર્તુળ $x^2+y^2=9$ ને સ્પર્શતા એક વર્તુળનું કેન્દ્ર $(h, k)$ છે. તો કેન્દ્ર $(h, k)$ ના યામોની તમામ શક્ય કિંમતો માટે $4\left(\mathrm{~h}^2+\mathrm{k}^2\right)=$ ..........
બિંદુ $(a, b)$ માંથી પસાર થતા તથા વર્તૂળ ${x^2} + {y^2} = {p^2}$ ને લંબચ્છેદી હોય તેવા વર્તૂળના કેન્દ્રનો બિંદુગણનું સમીકરણ મેળવો.
વર્તૂળો ${x^2} + {y^2} - 4x - 6y - 12 = 0$ અને${x^2} + {y^2} + 6x + 18y + 26 = 0$ ના સામાન્ય સ્પર્શકોની સંખ્યા મેળવો.
ધારો કે વર્તૂળો $x^2 + (y - 1)^2 = 9, (x - 1)^2 + y^2 = 25$ છે, કે જેથી
ધારો કે $C$ એ બિંદુઓ $A (2,-1)$ અને $B(3,4)$ માંથી પસાર થતું એક વર્તુળ છે. રેખાખંડ $AB$ એ $C$ નો વ્યાસ નથી.જો $C$ની ત્રિજ્યા $r$ હોય અને તેનું કેન્દ્ર, વર્તુળ $(x-5)^{2}+(y-1)^{2}=\frac{13}{2}$ પર આવેલ હોય, તો $r ^{2}=\dots\dots\dots$