જો વક્રો $x^{2}-6 x+y^{2}+8=0$ અને $\mathrm{x}^{2}-8 \mathrm{y}+\mathrm{y}^{2}+16-\mathrm{k}=0,(\mathrm{k}>0)$ એકબીજાના એક બિંદુમાં સ્પર્શે છે તો $\mathrm{k}$ ની મહતમ કિમંત મેળવો.
$25$
$36$
$30$
$42$
જો વર્તુળો ${x^2}\, + {y^2}\, - 16x\, - 20y\, + \,164\,\, = \,\,{r^2}$ અને ${(x - 4)^2} + {(y - 7)^2} = 36$ બે ભિન્ન બિંદુઓમાં છેદે તો ,
જો બે વર્તૂળો $ (x - 1)^2 + (y - 3)^2 = r^2 $ અને $x^2 + y^2 - 8x + 2y + 8 = 0$ બે ભિન્ન બિંદુઓમાં છેદે, તો.....
જો વર્તુળ $C_1 : x^2 + y^2 - 2x- 1\, = 0$ પરના બિંદુ $(2, 1)$ પાસે આવેલ સ્પર્શક વર્તુળ $C_2$ જેનું કેન્દ્ર $(3, - 2)$ હોય તેની જીવા છે જેની લંબાઈ $4$ થાય તો વર્તુળ $C_2$ ની ત્રિજ્યા મેળવો.
બિંદુ $(a, b)$ માંથી પસાર થતા તથા વર્તૂળ ${x^2} + {y^2} = {p^2}$ ને લંબચ્છેદી હોય તેવા વર્તૂળના કેન્દ્રનો બિંદુગણનું સમીકરણ મેળવો.
એક વર્તુળ એ વર્તુળો $x^{2}+y^{2}-6 x=0$ અને $x^{2}+y^{2}-4 y=0$ ના છેદબિંદુઓ માંથી પસાર થાય તથા તેનું કેન્દ્ર રેખા $2 x-3 y+12=0$ આવેલ હોય તો તે વર્તુળ ........ બિંદુ માંથી પસાર થશે