If the curves, $x^{2}-6 x+y^{2}+8=0$ and $\mathrm{x}^{2}-8 \mathrm{y}+\mathrm{y}^{2}+16-\mathrm{k}=0,(\mathrm{k}>0)$ touch each other at a point, then the largest value of $\mathrm{k}$ is

  • [JEE MAIN 2020]
  • A

    $25$

  • B

    $36$

  • C

    $30$

  • D

    $42$

Similar Questions

The value of k so that ${x^2} + {y^2} + kx + 4y + 2 = 0$ and $2({x^2} + {y^2}) - 4x - 3y + k = 0$ cut orthogonally is

Two circles ${S_1} = {x^2} + {y^2} + 2{g_1}x + 2{f_1}y + {c_1} = 0$ and ${S_2} = {x^2} + {y^2} + 2{g_2}x + 2{f_2}y + {c_2} = 0$ cut each other orthogonally, then

The points of intersection of circles ${x^2} + {y^2} = 2ax$ and ${x^2} + {y^2} = 2by$ are

If the circles ${x^2} + {y^2} - 2ax + c = 0$ and ${x^2} + {y^2} + 2by + 2\lambda = 0$ intersect orthogonally, then the value of $\lambda $ is

If $P$ and $Q$ are the points of intersection of the circles ${x^2} + {y^2} + 3x + 7y + 2p - 5 = 0$ and ${x^2} + {y^2} + 2x + 2y - {p^2} = 0$ then there is a circle passing through $P, Q$ and $(1, 1)$ for:

  • [AIEEE 2009]