વર્તૂળો $x^2 + y^2 - 8x - 2y + 1 = 0$ અને $x^2 + y^2 + 6x + y = 0$ ના સામાન્ય સ્પર્શકોની સંખ્યા :
$4$
$2$
$3$
$1$
વર્તૂળો $x^2 + y^2 + 8x - 2y - 9 = 0$ અને $x^2+ y^2 -2x + 8y - 7 = 0$ નો છેદ કોણ : ............ $^o$
આપેલ બે વર્તૂળો $x^2+ y^2 + ax + by + c = 0$ અને $ x^2 + y^2 + dx + ey + f = 0 $ પરસ્પર એકબીજાને લંબરૂપે ક્યારે છેદે ?
$\lambda $ ની એવી શકય કિમતોનો ગણ મેળવો કે જેથી વર્તુળ $x^2 + y^2 - 4x - 4y+ 6\, = 0$ અને $x^2 + y^2 - 10x - 10y + \lambda \, = 0$ ને બરાબર બે સામાન્ય સ્પર્શકો હોય
જો વક્રો $x^{2}-6 x+y^{2}+8=0$ અને $\mathrm{x}^{2}-8 \mathrm{y}+\mathrm{y}^{2}+16-\mathrm{k}=0,(\mathrm{k}>0)$ એકબીજાના એક બિંદુમાં સ્પર્શે છે તો $\mathrm{k}$ ની મહતમ કિમંત મેળવો.
જો વર્તુળ $C_1 : x^2 + y^2 - 2x- 1\, = 0$ પરના બિંદુ $(2, 1)$ પાસે આવેલ સ્પર્શક વર્તુળ $C_2$ જેનું કેન્દ્ર $(3, - 2)$ હોય તેની જીવા છે જેની લંબાઈ $4$ થાય તો વર્તુળ $C_2$ ની ત્રિજ્યા મેળવો.