વર્તુળ $C_1: x^2+y^2-4 x-2 y=\alpha-5$ ધ્યાને લો.ધારોકે તેનુ રેખા $y=2 x+1$ પરનું આરસી પ્રતિબિંબ અન્ય વર્તુળ $C_2: 5 x^2+5 y^2-10 f x-10 g y+36=0$ છે. ધારોકે $r$ એ $C_2$ ની ત્રિજયા છે. તો $\alpha+r=.......$

  • [JEE MAIN 2023]
  • A

     $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

વર્તૂળ $x^2 + y^2 = 1 $ સાથે સંકળાયેલ અને અંદરથી સ્પર્શતા  $(4, 3)$ કેન્દ્રવાળા વર્તૂળનું સમીકરણ....

ધારો કે વર્તૂળો $x^2 + (y - 1)^2 = 9, (x - 1)^2 + y^2 = 25$ છે, કે જેથી

જો બે વર્તૂળો $x^2 + y^2 + 2x - 4y - 4 = 0$ અને $x^2 + y^2 + 2x - 4y - 20 = 0$ ની વચ્ચેનું વર્તૂળ $x^2 + y^2 + 2x - 4y - k = 0$ હોય, તો$k = ……..$

કયા બિંદુમાંથી વર્તૂળો $x^{2} + y^{2} - 8x + 40 = 0, 5x^{2} + 5y^{2} - 25 x + 80 = 0 $ અને $x^{2} + y^{2} - 8x + 16y + 160 = 0 $ પર દોરેલા સ્પર્શકોની લંબાઈ સમાન રહે?

બિંદુઓ $(0,0),(1,0)$ માંથી પસાર થતા અને વર્તુળ $x^2+y^2=9$ ને સ્પર્શતા એક વર્તુળનું કેન્દ્ર $(h, k)$ છે. તો કેન્દ્ર $(h, k)$ ના યામોની તમામ શક્ય કિંમતો માટે $4\left(\mathrm{~h}^2+\mathrm{k}^2\right)=$ ..........

  • [JEE MAIN 2024]