यदि ${(1 + x)^n}$ के विस्तार में $p$ वें, $(p + 1)$ वें तथा $(p + 2)$ वें पदों के गुणांक समांतर श्रेणी में हों, तो
${n^2} - 2np + 4{p^2} = 0$
${n^2} - n\,(4p + 1) + 4{p^2} - 2 = 0$
${n^2} - n\,(4p + 1) + 4{p^2} = 0$
इनमें से कोई नहीं
${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^8}$ के प्रसार में ${x^7}$ का गुणांक होगा
निम्नलिखित के प्रसार में व्यापक पद लिखिए
$\left(x^{2}-y x\right)^{12}, x \neq 0$
${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ के विस्तार में ${x^{39}}$ का गुणांक होगा
यदि $\left(\frac{ x }{4}-\frac{12}{ x ^{2}}\right)^{12}$ के द्विपद प्रसार में $x$ से स्वतंत्र पद $\left(\frac{3^{6}}{4^{4}}\right) k$ हो, तो $k$ बराबर होगा .........
$k$ के धनात्मक पूर्णांक मानों की संख्या, ताकि $\left(2 x ^3+\frac{3}{ x ^{ k }}\right)^{12}, x \neq 0$ द्विपद प्रसार में अचर पद $2^8 . \ell$ हो जहाँ $\ell$ एक विषम पूर्णांक है, होगी -