$k$ के धनात्मक पूर्णांक मानों की संख्या, ताकि $\left(2 x ^3+\frac{3}{ x ^{ k }}\right)^{12}, x \neq 0$ द्विपद प्रसार में अचर पद $2^8 . \ell$ हो जहाँ $\ell$ एक विषम पूर्णांक है, होगी -
$20$
$9$
$2$
$70$
सिद्ध कीजिए कि $(1+x)^{2 n}$ के प्रसार में $x^{n}$ का गुणांक, $(1+x)^{2 n-1}$ के प्रसार में $x^{n}$ के गुणांक का दुगना होता है।
$\left(7^{1 / 5}-3^{1 / 10}\right)^{60}$ के द्विपद प्रसार में अपरिमेय पदों की कुल संख्या होगी
यदि ${(1 + x)^{2n + 2}}$ के प्रसार में मध्य पद का गुणांक $p$ है तथा ${(1 + x)^{2n + 1}}$ के प्रसार में मध्य पदों के गुणांक $q$ तथा $r$ हैं, तब
$(0.99)^{5}$ के प्रसार के पहले तीन पदों का प्रयोग करते हुए इसका निकटतम मान ज्ञात कीजिए।
यदि $\left(\mathrm{ax}^3+\frac{1}{\mathrm{bx}^{\frac{1}{3}}}\right)^{15}$ के प्रसार में $\mathrm{x}^{15}$ का गुणांक $\left(\mathrm{ax}^{\frac{1}{3}}-\frac{1}{\mathrm{bx}^3}\right)^{15}$ के प्रसार, में $\mathrm{x}^{-15}$ के गुणांक के बराबर है, जहाँ $a$ तथा $b$ धनात्मक संख्याएँ है, तो ऐसे प्रत्येक क्रमित युग्म $(\mathrm{a}, \mathrm{b})$ के लिए :