If the arcs of the same length in two circles $S_1$ and $S_2$ subtend angles $75^o $ and $120^o $ respectively at the centre. The ratio $\frac{{{S_1}}}{{{S_2}}}$ is equal to

  • A

    $\frac{1}{5}$

  • B

    $\frac{{81}}{{16}}$

  • C

    $\frac{{64}}{{25}}$

  • D

    $\frac{{25}}{{64}}$

Similar Questions

$\tan 1^\circ \tan 2^\circ \tan 3^\circ \tan 4^\circ ........\tan 89^\circ = $

Prove that: $\sin x+\sin 3 x+\sin 5 x+\sin 7 x=4 \cos x \cos 2 x \sin 4 x$

If $\sin \theta = - \frac{1}{{\sqrt 2 }}$ and $\tan \theta = 1,$ then $\theta $ lies in which quadrant

If $x = a{\cos ^3}\theta ,y = b{\sin ^3}\theta ,$ then

If for real values of $x,\cos \theta = x + \frac{1}{x},$ then