If the arcs of the same length in two circles $S_1$ and $S_2$ subtend angles $75^o $ and $120^o $ respectively at the centre. The ratio $\frac{{{S_1}}}{{{S_2}}}$ is equal to
$\frac{1}{5}$
$\frac{{81}}{{16}}$
$\frac{{64}}{{25}}$
$\frac{{25}}{{64}}$
Find the angle in radian through which a pendulum swings if its length is $75\, cm$ and the tip describes an arc of length.
$10 \,cm$
Let $A, B$ and $C$ are the angles of a plain triangle and $\tan \frac{A}{2} = \frac{1}{3},\,\,\tan \frac{B}{2} = \frac{2}{3}$. Then $\tan \frac{C}{2}$ is equal to
The product $\left(1+\tan 1^{\circ}\right)\left(1+\tan 2^{\circ}\right)\left(1+\tan 3^{\circ}\right)$ $. .\left(1+\tan 45^{\circ}\right)$ equals
If $(1 + \sin A)(1 + \sin B)(1 + \sin C)$$ = (1 - \sin A)(1 - \sin B)(1 - \sin C),$ then each side is equal to
If $x = a{\cos ^3}\theta ,y = b{\sin ^3}\theta ,$ then