$\tan 1^\circ \tan 2^\circ \tan 3^\circ \tan 4^\circ ........\tan 89^\circ = $
$1$
$0$
$\infty $
$1/2$
The equation ${(a + b)^2} = 4ab\,{\sin ^2}\theta $ is possible only when
If $\tan \theta + \sin \theta = m$ and $\tan \theta - \sin \theta = n,$ then
If $\sin \theta = \frac{{24}}{{25}}$ and $\theta $ lies in the second quadrant, then $\sec \theta + \tan \theta = $
If $\tan \theta - \cot \theta = a$ and $\sin \theta + \cos \theta = b,$ then ${({b^2} - 1)^2}({a^2} + 4)$ is equal to
If $(\sec \alpha + \tan \alpha )(\sec \beta + \tan \beta )(\sec \gamma + \tan \gamma )$$ = \tan \alpha \tan \beta \tan \gamma $, then $(\sec \alpha - \tan \alpha )(\sec \beta - \tan \beta )$$(\sec \gamma - \tan \gamma ) = $